Theory

Theory, Papers of Deep Learning DL

2017-03-10. Category & Tags: Deep Learning, DL, Theory

see also: /dl-do-it

MIXED TUTORIAL + TRIKCS #

PAPERS, TERMS & DEFINATIONS #

ToC:
一 ~ 三、概述, 背景, 人脑视觉机理
四、关于特征: 特征表示的粒度; 初级(浅层)特征表示; 结构性特征表示; 需要有多少个特征?
五 ~ 七、Deep Learning 的基本思想 (vs. Shallow Learning), Neural Network
八、Deep learning 训练过程: 传统神经网络 vs. deep learning
九、Deep Learning 的常用模型或者方法: AutoEncoder 自动编码器; Sparse Coding 稀疏编码; Restricted Boltzmann Machine(RBM) 受限波尔兹曼机; Deep BeliefNetworks 深信度网络; Convolutional Neural Networks 卷积神经网络
十、总结与展望
十一、参考文献和 Deep Learning 学习资源

...