Machine Learning

AI Cloud

2019-11-01. Category & Tags: Cloud Platform, Machine Learning, ML, Deep Learning, DL

“if you plan to use deep learning extensively (>150 hrs/mo), building your own deep learning workstation might be the right move.” [medium] Baidu AI Studio (only for PaddlePaddle) Paperspace (cooperating with Google Colab (cooperating with (C2C/P2P sharing, very cheap, a lot of time to init/load/unload) Kaggle (max 6h, good GPU but complex steps to use) MS Azure Amazon FloydHub (special CLI interface) ref: CN intro: Paperspace vs. Colab, 2019 Best Deals in Deep Learning Cloud Providers, 2018 比较云GPU平台

Learning Machine Learning, ML Books & Codes

2018-07-07. Category & Tags: Machine Learning, Artificial Intelligence, Book

See also: Machine Learning - Just-do-it (hands on) Basics Math Books Favoured # DSML (Kroese, Botev - Chapman Press 2019) Data Science and Machine Learning: Mathematical and Statistical Methods. With public datasets, code and pdf online. NNDL (Michael Nielsen 2016 邱锡鹏(译) 2020.06) Keywords: CNN, RNN, Attention, Gaussian Mix., RBM, DBN, GAN, RL, TF, PyTorch: equation, pseudocode, exercise … 公开了所有代码等内容的(中文)电子书。 PDF, PPT, code, exercise & solution, etc. MLAPP (Kevin Murphy), Machine Learning - A Probablistic Perspective, is more comprehensive, insightful and interesting, and contains more “real” examples/problems. ...

Data Mining

2018-04-26. Category & Tags: Data Mining, DM, Machine Learning, ML

Read also: A 20-Year Community Roadmap for Artificial Intelligence Research in the US - 109 pages, AAAI. (CN intro: 美国人工智能研究的 20 年社区路线图(讨论稿)) Best Paper Awards in Computer Science (since 1996) (cn: DataWhale) AI Benchmark: web, cn intro Cheatsheets AI 最全干货超级大列表,100+ 张速查表全了! (github) 热心网友推荐真正有价值的机器学习课程 Papers with code/data: AI 研习社 (highly automated), esp. (CN intro) g/zziz/pwc by Nikola for CV, NLP, self-driving. DEFs Relation Overview # Most terminologies have been defined well, except “data mining” as the biggest concept. ...

ML Interpratation, Comprehensibility & Causality

2018-04-17. Category & Tags: Machine Learning, Interpretability, Comprehensibility, Understandability, Explain

See also: DL-theory > ## cnn visualization/comprehensibility 可解释的机器学习 (What) 可解释性的重要性 (Why) 具体如何解释 (How) Insights which can be extracted from the models Permutation Importance Partial Dependency Plots SHAP Values SHAP Values in Advance LIME (万金油), Tree interpreter, etc. 凭什么相信你,我的CNN模型?关于CNN模型可解释性的思考 inc.:CAM, Grad-CAM, Lime. Book by Christoph Molnar: Interpretable Machine Learning – A Guide for Making Black Box Models Explainable (GitHub), (CN) All-in-one: SHAP. ref: Causality / Causal Inference # Jonas Peters, Dominik Janzing and Bernhard Schölkopf 2017 - Elements of Causal Inference ; Bernhard Schölkopf 2019 - Causality for Machine Learning, ...

Machine Learning - Just-do-it (hands on) Basics

2017-03-13. Category & Tags: Machine Learning

See also: ML books. This blog collects some useful materials for non-theory learners like engineers. Book: python-machine-learning-book code on github ML from scratch (py) Erik Linder-Norén, Stockholm Machine learning, in numpy (so, also scratch, but a lot Neural Nets & RL) David Bourgin, CA 7 Types of Regression Techniques you should know (modern regressions) analyticsvidhya evernote backup GitHub标星1.3k!一款功能强大的特征选择工具 2019.11 Causality analysis: MS dowhy, Causalinference in py (inactive), CausalInference in Julia, IBM causallib etc. ...

DMML Tools Trend & Relationship 2016

2016-06-16. Category & Tags: DMML, Tools, Data Mining, Machine Learning, Artificial Intelligence

This is a summary of KD-nuggets blogs: here and here. Pictures are modified for my own notes. Tools Associations # sunny’s conclusion # Possible framework 1: Hadoop + Spark + Python + scikit. Possible framework 2: SQL+ Excel + Tableau. Try NOT use: RapidMiner, KNIME (whatever situation). Big Data Related Tools # Deep Learning Related Tools # Big_Data- / Deep_Learning-Related Tools # Conclusion 1: Big_Data & DL are positively related. ...