TensorFlow Engineering with CUDA GPU for Deep Learning
See also:
- TF practical part in do deep learning
- How to setup Docker and Nvidia-Docker 2.0 on Ubuntu 18.04
Install #
Summary: install CUDA first, then TF.
ref TF 1.0 doc
ref nvidia doc, until step 3
requirements #
- 64-bit Linux
- Python 2.7 or 3.3+ (3.5 used in this blog)
- NVIDIA CUDA 7.5 (8.0 if Pascal GPU)
- NVIDIA cuDNN >v4.0 (v5.1 recommended)
- NVIDIA GPU with compute capability >3.0
steps #
1.Manually download “cuDNN v6.0 Library for Linux”.
2.Bash auto Install CUDA in Ubuntu 16.04.2, can combine (&& \
) with code below.
3.Install cuDNN, PIP: