DL

AI Cloud

2019-11-01. Category & Tags: Cloud Platform, Machine Learning, ML, Deep Learning, DL

“if you plan to use deep learning extensively (>150 hrs/mo), building your own deep learning workstation might be the right move.” [medium]

  • Baidu AI Studio (only for PaddlePaddle)
  • Paperspace (cooperating with fast.ai)
  • Google Colab (cooperating with fast.ai)
  • vast.ai (C2C/P2P sharing, very cheap, a lot of time to init/load/unload)
  • Kaggle (max 6h, good GPU but complex steps to use)
  • MS Azure
  • Amazon
  • FloydHub (special CLI interface)

ref:

Deep Learning - Just do it!

2019-07-22. Category & Tags: Deep Learning, DL, Practise

see also: /dl-theory

Data #

Tutorials #

News & Tech #

Ready to Use Software #

GPU #

Which GPU(s) to Get for Deep Learning: My Experience and Advice for Using GPUs in Deep Learning 2020-09-07 (cn)

...

Theory, Papers of Deep Learning DL

2017-03-10. Category & Tags: Deep Learning, DL, Theory

see also: /dl-do-it

MIXED TUTORIAL + TRIKCS #

PAPERS, TERMS & DEFINATIONS #

ToC:
一 ~ 三、概述, 背景, 人脑视觉机理
四、关于特征: 特征表示的粒度; 初级(浅层)特征表示; 结构性特征表示; 需要有多少个特征?
五 ~ 七、Deep Learning 的基本思想 (vs. Shallow Learning), Neural Network
八、Deep learning 训练过程: 传统神经网络 vs. deep learning
九、Deep Learning 的常用模型或者方法: AutoEncoder 自动编码器; Sparse Coding 稀疏编码; Restricted Boltzmann Machine(RBM) 受限波尔兹曼机; Deep BeliefNetworks 深信度网络; Convolutional Neural Networks 卷积神经网络
十、总结与展望
十一、参考文献和 Deep Learning 学习资源

...