Theory, Papers of Deep Learning DL
see also: /dl-do-it
MIXED TUTORIAL + TRIKCS #
- Google: TF, DL, Tutorial, Tricks, etc
- The Ultimate Course and Book list to be an expert in Mathematics and Programming (Content: Discrete Mathematics, Linear Algebra, Calculus, Probability, Cryptography, Geometry and Statistics. 45 Mathematics Courses)
- Deep Learning and Reinforcement Learning Summer School 2018 - Yoshua Bengio etc.
- 深度学习课程笔记 by Tess Ferrandez, recommended by Andrew Ng
PAPERS, TERMS & DEFINATIONS #
- 一文读懂自注意力机制:8 大步骤图解+代码 ref: Illustrated: Self-Attention – Step-by-step guide to self-attention with illustrations and code
- [典型/经典 DL/NLP 模型] 读完这 45 篇论文,“没人比我更懂 AI 了”
- 如何开启深度学习之旅?这三大类 125 篇论文为你导航
- Github DL papers DeepLearningBook/DeepLearningPapers.md
- Papers Milestone AndrewYuan.github.io/
- DL without PhD By Google Cloud NEXT2017. backup evernote
- 浅析 Hinton 最近提出的 Capsule 计划
- 一起读懂传说中的经典: Restricted Boltzmann Machine(RBM) 受限波尔兹曼机
- RWA in ostmeyer2017machine ( 代码实现了一个用于处理连续数据的新型 RNN 模型,该模型计算每个预处理步骤的复现加权平均值(RWA)。使用这种方法,模型可以沿着序列方向,在任何位置形成直接连接。这与仅使用预处理的传统 RNN 架构相反。 )
- [DL 基本理论] 邹晓艺专栏 |Deep Learning 系列笔记 2013
- TinyBERT:模型小 7 倍,速度快 8 倍,华中科大、华为出品. tip: 1~2min with a single NVIDIA K80 GPU. (see also FastBert in
/dl-do-it
)
ToC:
一 ~ 三、概述, 背景, 人脑视觉机理
四、关于特征: 特征表示的粒度; 初级(浅层)特征表示; 结构性特征表示; 需要有多少个特征?
五 ~ 七、Deep Learning 的基本思想 (vs. Shallow Learning), Neural Network
八、Deep learning 训练过程: 传统神经网络 vs. deep learning
九、Deep Learning 的常用模型或者方法: AutoEncoder 自动编码器; Sparse Coding 稀疏编码; Restricted Boltzmann Machine(RBM) 受限波尔兹曼机; Deep BeliefNetworks 深信度网络; Convolutional Neural Networks 卷积神经网络
十、总结与展望
十一、参考文献和 Deep Learning 学习资源
EBOOK #
邱锡鹏 教授 2020 神经网络与深度学习 #
Keywords: CNN, RNN, Attention, Gaussian Mix., RBM, DBN, GAN, RL, TF, PyTorch: equation, pseudocode, exercise …
PDF, PPT, code, exercise & solution, etc.
python data science handbook - 2017 #
[easy to find common examples]
Jupyter Notebooks for the Python Data Science Handbook
stanford deep learning tutorial #
This tutorial will teach you the main ideas of Unsupervised Feature Learning and Deep Learning. By working through it, you will also get to implement several feature learning/deep learning algorithms, get to see them work for yourself, and learn how to apply/adapt these ideas to new problems.
mathematics for computer science – mit 麻省理工的英文原版教材 #
see also /math
tensorflow cook book #
Nick McClure - TensorFlow Machine Learning Cookbook: code, (similar simple cn cases)
datascience from scratch - 2014 #
In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch.
周志华 机器学习 2016 #
入门的书籍,书中的例子十分形象且简单易懂。
the deep learning textbook - 2015 #
It helps students and practitioners enter the field of machine learning in general and deep learning in particular.
TOOLS #
VISDOM: DATA VISUALIZATION #
For Torch/Numpy, by Facebook. github
A flexible tool for creating, organizing, and sharing visualizations of live, rich data. Supports Torch and Numpy.’
TALKS & PRESENTATIONS #
< machine learning: testing and error metrics > #
model selection & improvement.
by Luis Serrano Udacity @ youtube
weight Initialization in deep learning #
by 夏飞@google LeiPhone
GAN FAQ #
Generative Adversarial Networks (GANs), Some Open Questions/problems by Sanjeev Arora. See their next blog for solutions.
See sections below for GAN details.
多源数据融合与时空数据挖掘 #
Practical Deep Learning For Coders Part 1 #
Taught by Jeremy Howard (Kaggle’s #1 competitor 2 years running, and founder of Enlitic).
fast.ai
CNN #
CNN, ImageNet: CNN 浅析和历年 ImageNet 冠军模型解析
How do Convolutional Neural Networks work?
cn
Insights into AlexNet
CNN explained, with python, analyticsvidhya 2016
CNN 图像分割简史:从 R-CNN 到 Mask R-CNN
cnn visualization/comprehensibility #
一位中国博士把整个 CNN 都给可视化了,可交互有细节,每次卷积 ReLU 池化都清清楚楚 来源:量子位 2020-05
Netscope CNN Analyzer 2017-11: A web-based tool for visualizing and analyzing convolutional neural network architectures (or technically, any directed acyclic graph). Currently supports Caffe’s prototxt format.
深度学习调参入门,有哪些技巧? AI 科技评论 2017-03
TensorBoard in “Insights into AlexNet”
OTHER KEYWORDS in GITHUB #
“awesome deep learning”
“awesom deep learning papers”
“图解 TensorFlow 架构与设计”
邓仰东专栏|机器学习的那些事儿 #
目录
1.绪论
1.1.概述
1.2 机器学习简史
1.3 机器学习改变世界:基于 GPU 的机器学习实例
1.3.1 基于深度神经网络的视觉识别
1.3.2 AlphaGO
1.3.3 IBM Waston
1.4 机器学习方法分类和本书组织
1.3 机器学习改变世界:基于 GPU 的机器学习实例
机器学习技术正在不断取得举世瞩目的成就,这一节会介绍三个机器学习的成功案例,让大家体会机器学习技术怎样解决极度挑战性的实际问题。
1.3.1 基于深度神经网络的视觉识别
GAN #
GANs - the story so far, 2019-06, (bak) (cn, (cn bak)): GAN, DCGAN, CGAN, CycleGAN, CoGAN, ProGAN, WGAN, SAGAN, BigGAN, StyleGAN.
yipansansha 一盘散沙的工作间, slack:DeepThinkInPy, papers
生成式对抗网络资料荟萃(原理/教程/报告/论文/实战/资料库) (bak)
IMAGE CONTENT SEARCH #
TensorFlow TF + Elasticsearch 实现全文的图片搜索(附源代码)
从 R-CNN 到 RFBNet,目标检测架构 5 年演进全盘点
RNN #
TF voice 使用 TensorFlow 构建、训练和改进循环神经网络
Using Fast Weights to Attend to the Recent 亮点:在 Short-Term Memory、Long-Term Memory 以及 LSTM 之外,有什么更好的 Attention 机制呢? 多伦多大学。
GENERAL GREAT #
MIT Efficient Processing of Deep Neural Networks: A Tutorial and Survey
RESIDUAL NET #
Residual Networks Behave Like Ensembles of Relatively Shallow Network + 康奈尔
OTHERS #
Deep learning mooc open course @ Hugo Larochelle
DL 小钢炮攒机心得 | 帮你踩坑
control keras in WeChat